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Abstract. Berry phase for a spin-1/2 particle moving in a flat space-time with torsion is investigated in
the context of the Einstein–Cartan–Dirac model. It is shown that if the torsion is due to a dense polarized
background, then there is a Berry phase only if the fermion is massless and its momentum is perpendicular
to the direction of the background polarization. The order of magnitude of this Berry phase is discussed
in other theoretical frameworks.

1 Introduction

The geometry of a four-dimensional space-time U4 is given
by the metric (gµν) and torsion (Tα

µν) tensors. In the con-
text of Einstein–Cartan–Dirac (ECD) theory, the axial
current of the background material is the source of the tor-
sion field and leads to a completely anti-symmetric torsion
tensor, represented by a pseudo-vector Sµ. This pseudo-
vector is coupled to the axial current of all the fermion
species. (For a brief review of Einstein–Cartan–Dirac the-
ory, see AppendixA.)

One of the most important features of the physics of
torsion is its phenomenological aspects. To study this, we
must realize that in the context of ECD theory, the torsion
of space-time vanishes in vacuum, and one expects a non-
vanishing torsion pseudo-vector only if the space is filled
with a (spin-) polarized background matter. But in such
a space-time, there are plenty of interactions which can
easily mask any effect of torsion. So the best candidate to
probe such an interaction is the neutrino, as it is weakly
coupled to the rest of the matter.

Studies of the interactions of neutrinos with torsion
go to several years ago. In [1] (see also [2]), the effect of
torsion on neutrino oscillations has been studied by as-
suming that the torsion eigenstates, i.e. the eigenstates of
the interaction part of the Hamiltonian, are different from
the weak interaction eigenstates. Hammond has studied
the different aspects of the fermion interaction with a tor-
sion field derived from a second rank potential [3,4], for
example the torsion coupling constant [5] and the relation
between the intrinsic spin of the string and the torsion [6].
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The theoretical and phenomenological aspects of the tor-
sion field have been investigated in [7] by an effective field
theoretical method, and the contribution of the torsion
of space-time to standard neutrino oscillations has been
studied in the context of ECD theory in [8], in which the
torsion and weak interaction eigenstates have been consid-
ered the same. More recently, the quantum reflection of a
massless neutrino from a torsion induced potential barrier
has been discussed in [9].

Before going further, it may be useful to describe why
we consider the ECD theory to investigate the physics of
torsion and why we do not work in a more general frame-
work in which the torsion field is considered as an prop-
agating quantum field. The reason, in our view, is that
if one considers the torsion field Sµ as a quantum field
which propagates, the resulting theory will have serious
problems. As has been shown in [10], the effective quan-
tum field theory of a massive fermion coupled to the axial
vector Sµ (i.e. the torsion field) is unitary and renormal-
izable only when m � M ; that is, when the torsion mass
is much greater than the mass of the heaviest fermion.
But the restrictions coming from the contact experiment
reach only the region M < 3TeV [7], which is not enough
to satisfy the condition m � M for all the fermions of the
standard model. Therefore the ECD theory is almost the
unique available quantum theory of gravity with torsion.

In general, the evolution of the neutrinos in a space-
time is affected by

(1) the structure of the mass matrix (normally leading to
oscillations);

(2) effects of matter (weak interaction, MSW effect, etc.);
(3) gravity (i.e. metric); and
(4) torsion of space-time.
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In general, both the amplitude and the phase of the
neutrino wavefunctions can be affected by all these ef-
fects. Now if there is some nontrivial contribution to the
phase of the neutrino wavefunction due to the torsion field
– the so-called Berry phase – then there might be some
detectable effect associated with torsion. So it is worth-
while to investigate the Berry phase of a spin-1/2 particle
in a space-time with torsion.

In this paper, we want to study this Berry phase in
the context of ECD theory. We consider a space-time U4,
whose metric is ηµν = diag(1,−1,−1,−1), and its torsion
pseudo-vector Sµ is due to static polarized dense matter1.
We see that Sµ = (0,K ′ŝ), where K ′ is some constant
depending on the specific model considered – through the
coupling constant – and also on the density and polariza-
tion of the background matter. The unit vector ŝ deter-
mines the direction of the background polarization (spin).

2 Dirac equation in U4

The Hamiltonian for a spin-1/2 particle moving in this U4

space-time is H = H0 +H1 (see (A.9)), where H0 = cα ·
P +mc2β is the usual Hamiltonian in a flat (Minkowski)
space-time (α1, α2, α3, and β are the Dirac matrices), and
H1 = (�c/8)γ5γ

0S/ is the interaction Hamiltonian due to
the torsion field.

It is important to note that both H0 and H1 are Her-
mitian. Therefore, the time evolution generated by the
total Hamiltonian is unitary. So the conclusion of [11,
12] where the authors have obtained a “dissipative term”,
which causes the state to decrease exponentially, is wrong.
Their mistake, we think, is in calculating H1 ((10) of [12]).
More recently, the effect of the Berry phase on neutrino
oscillations has been studied in [13]. In these papers, the
authors have considered a null vector Sµ, which is dif-
ferent from ours (which is derived in the framework of
ECD theory). Also they have considered massive neutri-
nos, which again is different from the situation we study.
As we will show, we have to consider massless neutrinos
(which cannot oscillate).

In order to study the Berry phase of a spin-1/2 particle,
we must first calculate the torsion field Sµ. For simplic-
ity, we consider a fermionic medium with all the fermions
at rest, through which our spin-1/2 particle moves. In
this case, it can be shown that the torsion field Sµ is
Sµ = (0,K ′ŝ), where K ′ in the context of ECD theory
is −48π�ρG/c3, and ρ and ŝ are the number density and
polarization unit vector of the background matter, respec-
tively [9]. Now choosing the chiral representation for the
Dirac matrices, these two Hamiltonians read

H0 =
( −cσ · P mc2

mc2 cσ · P

)
,

1 Actually, for torsion to be important, the matter must be
very dense; and in such a situation the metric shall not be flat.
We are considering a flat metric to see the effect of a pure
torsion. Any calculation must be repeated in the more general
case of a curved metric, such as the Schwarzschild metric

H1 = K

(
σ · ŝ 0
0 σ · ŝ

)
, (1)

where the coupling constant K is (in the ECD model)

KECD =
12πρG�

2

c2
. (2)

Here P is the momentum of the spin-1/2 particle, and
the σi are the Pauli matrices. Let us take P = P ẑ and
ŝ = sinϕ cosαx̂+sinϕ sinαŷ+cosϕẑ. Therefore the total
Hamiltonian becomes

H =




−cP + Ks3 Ks− mc2 0
Ks+ cP − KS3 0 mc2

mc2 0 cP + Ks3 Ks−
0 mc2 Ks+ −cP − Ks3


 ,

(3)

where s± := s1 ± is2 and s3 := sz.

3 Evolution of the particle state
and its Berry phase

We consider the following problem: An eigenstate of H0
begins to move in U4. This can be the case if, for example,
there is a region of space where the matter is polarized and
a spin-1/2 particle enters this region; or if in such a region,
a particle is created as an eigenstate of H0.

With no loss of generality, we can choose ŝ in the xz
plane. In this case, the eigenvalues of H are E1, −E1, E2,
and −E2, where

E1 =
√
K2 + c2P 2 +m2c4 + 2cK

√
m2c2 + P 2 cos2 ϕ,

(4)

E2 =
√
K2 + c2P 2 +m2c4 − 2cK

√
m2c2 + P 2 cos2 ϕ.

(5)

Let |ψ(0)〉 be the following eigenstate of H0:

|ψ(0)〉 = (
0 1 0 (

√
q2 +m2c2 − q)/mc

)t
, (6)

where q is the momentum of the particle in the torsion-free
region and “t” denotes the transpose. Form = 0, this state
becomes |ψ(0)〉 = ( 0 1 0 0 )t, which is the spinor of
a left-handed neutrino. |ψ(0)〉 in (6) can be written as a
superposition of |E1〉, | − E1〉, |E2〉, and | − E2〉:

|ψ(0)〉 = a|E1〉+ b| − E1〉+ c|E2〉+ d| − E2〉. (7)

At time t, this state becomes

|ψ(t)〉 = ae−iE1t/�|E1〉+ beiE1t/�| − E1〉+ ce−iE2t/�|E2〉
+deiE2t/�| − E2〉. (8)

From the general theory of the Berry phase [14], we know
that if at some time t, say T , |ψ(T )〉 = eiΦ|ψ(0)〉, then
there will be a Berry phase β = Φ+i

∫ T

0 dt〈ψ(t)|d/dt|ψ(t)〉.
In our problem, such a T exists only if exp(2iE1T/�) =
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exp(i(E1−E2)T/�) = exp(i(E1+E2)T/�) = 1, from which
it follows that E2 = (2n + 1)E1, for some integer n. In
other words,

4n(n+ 1)(K2 + c2P 2 +m2c4) (9)

+4(2n2 + 2n+ 1)cK
√
m2c2 + P 2 cos2 ϕ = 0.

This is independent of P only if n = 0. We then get
K(m2c2 + P 2 cos2 ϕ)1/2 = 0, which is true in either of
the following two cases:
(1) K = 0, i.e., when there is no torsion. This is the case

of a free particle moving in ordinary, i.e. torsion-free,
Minkowski space-time. In this case there is no Berry
phase, the phase is only dynamical.

(2) m2c2 + P 2 cos2 ϕ = 0, which is true only if m = 0
and ϕ = π/2. In the following, we calculate the Berry
phase for this nontrivial case, i.e. a massless fermion
with momentum perpendicular to the polarization of
the background.
To calculate the Berry phase in case (2) above, we

need the eigenstates |E1〉, | − E1〉, |E2〉, and | − E2〉 (when
m = 0 and ϕ = π/2, we have E1 = E2 = E)

|E1〉 =




−cP + E√
K2 + (cP − E)2

K√
K2 + (cP − E)2

0
0




,

| − E1〉 =




0
0

cP − E√
K2 + (cP − E)2

K√
K2 + (cP − E)2




, (10)

|E2〉 =




0
0

cP + E√
K2 + (cP + E)2

K√
K2 + (cP + E)2




,

| − E2〉 =




− cP + E√
K2 + (cP + E)2

K√
K2 + (cP + E)2

0
0




, (11)

where E := (c2P 2 +K2)1/2 is the energy of |ψ(0)〉.
Expanding (6) (with m = 0) in terms of these spinors,

and using the notation of (7), we see that b = c = 0, and

i〈ψ(t)|d/dt|ψ(t)〉 = E

�

(
|a|2 − |d|2

)
=
1
�

√
E2 − K2.

(12)
Also in this case, Φ and T are

Φ = −π, T =
π�

E
. (13)

Therefore, the Berry phase β becomes

β = π
(√

1− (K/E)2 − 1
)
= −π

2
K2

E2 + · · · (14)

This means that limK→0 β = 0, as we expect. Note that
K has the dimension of energy.

The order of magnitude of this effect depends on the
coupling constant and the total axial current of the back-
ground matter. In Einstein–Cartan–Dirac theory (mini-
mal coupling), K is given by (2), which leads to the small
value KECD (eV) ∼ 10−69ρ (cm−3). But in other the-
oretical frameworks, it may lead to greater values. For
example in some models, the Newton gravitational con-
stant is replaced by the weak coupling constant GT ∼
1031G (see for example [2]), which leads to KV−A (eV) ∼
10−38ρ (cm−3). In the effective field theory approach of
Belyaev and Shapiro [7], the value of K could be as large
as KEFT (eV) ∼ 10−38ρ (cm−3). And finally in the strong
gravity regime (i.e. inside collapsing matter or in the early
stage of the universe), G → GSG ∼ 1039G [15], so KSG
(eV) ∼ 10−30ρ (cm−3). For a more detailed discussion
of the torsion coupling constant, see [9] and references
therein.
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Appendix

A Brief review
of Einstein–Cartan–Dirac theory

The geometry of a d-dimensional space-time Ud is given by
two geometrical objects: a metric tensor gµν and a connec-
tion Γα

µν . The most general metric-compatible connection
is Γα

µν =
{

α
µν

}
+Kα

µν , where
{

α
µν

}
is the usual Christoffel

symbol, derived from the metric, and Kα
µν is a tensor of

rank 3, named contorsion. Kα
µν is related to the torsion

tensor Tα
µν := Γα

µν − Γα
νµ as follows:

Kαµν =
1
2
(Tαµν − Tµαν − Tναµ). (A.1)

Tαµν can be decomposed as

Tαµν =
1
3
(gανTµ − gαµTν)− 1

6
εαµνσS

σ + qαµν , (A.2)

where Tµ := −gαβKαβµ, Sσ := −εσαµνKαµν , and qαµν

is the remainder, defined by (A.2). Using the usual pro-
cedure, one can show that the scalar curvature R of this
space-time is

R = R̃ − 2√−g
∂κ

(√−gτκ
)

−
(
4
3
T 2 +

1
24

S2 +
1
2
qαµνq

µνα

)
, (A.3)
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where R̃ is the Ricci scalar derived from the Christoffel
symbols, i.e. the scalar curvature of the torsion-free space-
time.

In Einstein–Cartan–Dirac theory, the space-time is as-
sumed to be U4, with both metric and torsion. The fields
of the theory are the metric, the contorsion, and a set of
spin-1/2 fields which are minimally coupled to the metric
and torsion by the usual covariant derivative. The total
action of Einstein–Cartan–Dirac theory is I = IEC + ID,
where

IEC = − c3

16πG

∫
d4x

√−gR, (A.4)

and

ID = i�
∑

j

∫
d4x

√−gψ̄j

(
eµ
aγ

a(∂µ + Γµ) + i
mjc

�

)
ψj ,

(A.5)
where the sum is over all fermions species. Variation with
respect to the contorsion field leads to

Sµ =
72π�G

c3

∑
j

(Jj)
µ
5 , (A.6)

Tµ = 0, qαµν = 0. (A.7)

This means that, the contorsion (or torsion) field is com-
pletely anti-symmetric, and the pseudo-vector dual to the
torsion field is the sum of the axial currents of the fermion
field(s) ((Jj)

µ
5 = ψ̄jγ

µγ5ψj).
Variation with respect to the fermion fields leads to

the following Dirac equation:

γµ∂µψj + i
mjc

�
ψj +

i
8
γ5S/ψj = 0. (A.8)

This equation can be written as a Schrödinger-type equa-
tion: i�∂tψ = Hψ, where for gµν = ηµν the Hamiltonian
H becomes

H = cα · P +mc2β +
�c

8
γ5γ

0S/. (A.9)

In the above equations, Sµ is the torsion pseudo-vector
which in the Einstein–Cartan–Dirac theory is given by
(A.6).
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